• Читателям
  • Авторам
  • Партнерам
  • Студентам
  • Библиотекам
  • Рекламодателям
  • Контакты
  • Язык: English version
227
Рубрика: Мастерская
Раздел: Технологии
Реактивные самолеты будущего

Реактивные самолеты будущего

Извечная мечта человечества — чтобы «люди летали как птицы» — к XXI веку сменилась на более соответствующую духу времени: «если бы самолеты летали как космические ракеты!»

Уже определены перспективы создания нового поколения самолетов, летающих с скоростями, в 5—15 раз превосходящими звуковую, а также самолетов, взлетающих с обычных аэродромов, выходящих с космической скоростью в околоземное пространство и возвращающихся обратно. Для этого необходимо развивать новые технологии, совершенно отличные от тех, которые присущи вертикально взлетающим ракетно-космическим системам и современным самолетам.

С этой публикации ученые из Института теоретической и прикладной механики СО РАН (Новосибирск) начинают знакомить наших читателей с научно-техническими исследованиями и проектами, связанными с гиперзвуковыми и воздушно-космическими самолетами будущего.

ВОЗДУШНО-КОСМИЧЕСКИЙ КОРАБЛЬ

ПЕРВЫЙ ПРОЕКТ ВОЗДУШНО-КОСМИЧЕСКОГО КОРАБЛЯ С ГИПЕРЗВУКОВЫМ ПРЯМОТОЧНЫМ ВОЗДУШНО-РЕАКТИВНЫМ ДВИГАТЕЛЕМ (1966 г., СОВЕТСКИЙ СОЮЗ)

В 1957 году Евгением Сергеевичем Щетинковым была выдвинута и обоснована идея создания прямоточного двигателя со сжиганием горючего в сверхзвуковом потоке в камере сгорания — ГПВРД. Практически одновременно работы по изучению горения в сверхзвуковом потоке были начаты в США. Так началась история создания воздушно-космических кораблей, которые могут взлетать с обычных аэродромов, выходить в околоземное пространство и возвращаться обратно.

Уже в 1966 г. в НИИ-1 МОМ (ныне Центр им. М. В. Кел¬дыша), где в то время работал Е. С. Щетинков, был выполнен пионерный проект одноступенчатого воздушно-космического корабля с комбинированной силовой установкой, состоящей из жидкостного ракетного двигателя (ЖРД), прямоточного воздушно-реактивного двигателя (ПВРД) и ГПВРД, работающих на жидком водороде.

Используя возможности комбинированной работы двигателей при разных числах Маха (М)*, такая силовая установка выводит космический корабль из атмосферы на околоземную орбиту при М 20, когда включаются два высотных ЖРД.

Стартовый вес 150—250 тонн, полезная нагрузка 6—11 тонн

Cоздание космических ракет стало одним из самых впечатляющих достижений человечества в прошедшем двадцатом веке. Благодаря им человеку удалось преодолеть земное притяжение и выйти в космическое пространство — освоить околоземные орбиты, осуществить полеты на Луну, запустить аппараты-зонды на другие планеты.

А можно ли создать самолеты, которые по скорости были бы сравнимы с ракетами? Ракеты выходят в космос, преодолевая толщу земной атмосферы бла­годаря сверхвысоким скоростям, достигающим первой космической**. Современная авиация пока не преодолела барьер 1/8 первой космической. Максимальная скорость боевых реактивных самолетов лишь втрое превышает скорость звука (около 3500 км/час). Пассажирские авиалайнеры летают с дозвуковой скоростью (менее 1000 км/час), уже отлетавшие сверхзвуковые «Конкорд» и Ту 144 имели крейсерскую скорость только примерно вдвое большую.

К настоящему времени уже определены перспективы создания в двадцать первом веке нового поколения самолетов, летающих с гиперзвуковыми скоростями, в 5—15 раз превосходящими звуковую, а также воздушно-космических самолетов, взлетающих с обычных аэродромов, выходящих с космической скоростью в околоземное пространство и возвращающихся обратно. Для их создания необходимо развитие новых технологий, совершенно отличных от тех, которые присущи вертикально взлетающим ракетно-космическим системам и современным самолетам.

«Ключевым элементом» создания таких аппаратов является разработка воздушно-реактивной силовой установки, экономичной и работающей в беспрецедентно широком диапазоне скоростей – от дозвуковых до гиперзвуковых. Для такой силовой установки может быть эффективно использовано ракетное горючее — жидкий водород, для которого тепловая энергия, выделяемая при сжигании, является максимальной. Его запасы в природе практически неисчерпаемы, он может вырабатываться как из углеводородных ископаемых, так и из воды. Водород — экологически чистое топливо, при его сгорании образуется обыкновенная вода.

Проведенные к настоящему времени научно-технические исследования дают представление о том, какими будут гиперзвуковые и воздушно-космические самолеты будущего. Прежде всего, аэродинамические формы гиперзвуковых самолетов будут существенно отличаться как от тех, которые используются для ракетно-космических аппаратов, так и от современных до- и сверхзвуковых реактивных самолетов. Конфигурации гиперзвуковых воздушно-реактивных аппаратов становятся интегрированными, крыло и фюзеляж объединяются в единый несущий корпус, к которому в свою очередь примыкают воздухозаборник и сопло двигателя. Такого рода конфигурации являются пока еще малоизученными, но уже теперь ясно, что они обеспечивают высокую аэродинамическую эффективность и улучшают летные свойства аппаратов при сверхвысоких скоростях.

К сожалению, создание гиперзвуковых и воздушно-космических самолетов военного назначения и тем более гражданского — дело еще далекого будущего. Но гиперзвуковые крылатые ракеты и экспериментальные аппараты с ГПВРД полетят в ближайшие 10—15 лет.

Для этого необходимо проведение научно-технических исследований в этом направлении. Технологии высокого уровня, развиваемые в связи с созданием гиперзвуковых и воздушно-космических самолетов, могут найти широкое применение в народном хозяйстве, неавиационных промышленных отраслях.

Авторы и редакция благодарят АНТК им. А. Н. Туполева, ЦИАМ и ЛИИ, НПО «Молния» за предоставленные иллюстративные материалы

* Число Маха представляет собой отношение скорости полета летательного аппарата к скорости звука
** Скорость, которую надо сообщить телу при запуске с какой-либо планеты, чтобы оно стало ее искусственным спутником, называют первой космической. Для искусственного спутника Земли, движущегося у самой ее поверхности, v1 = 7,9 км/с

Понравилось? Поделись с друзьями!

Подпишись на еженедельную e-mail рассылку!

comments powered by HyperComments