• Читателям
  • Авторам
  • Партнерам
  • Студентам
  • Библиотекам
  • Рекламодателям
  • Контакты
  • Язык: English version
17533
Звёздный свет

Звёздный свет

Звезды – это, пожалуй, самое интересное, что есть в астрономии. Кроме того, их внутреннее строение и эволюцию мы понимаем лучше, чем что-либо в космосе (во всяком случае, нам так кажется). С планетами дело обстоит не очень хорошо, потому что их внутренности очень трудно исследовать – мы видим только то, что на поверхности. А что касается звезд, то большинство из нас уверено, что они устроены просто.

В начале прошлого века один молодой астрофизик высказался на семинаре у Эддингтона в том духе, что проще звезд ничего нет. На что более опытный астрофизик ответил: «Ну да, если Вас рассматривать с расстояния в миллиарды километров, то Вы тоже покажетесь простым».

На самом деле звезды не так просты, как кажутся. Но все-таки их свойства исследованы наиболее полно. Тому есть две причины. Во-первых, мы умеем численно моделировать звезды, потому что, как нам кажется, они сделаны из идеального газа. Точнее, из плазмы, которая ведет себя как идеальный газ, уравнение состояния которого довольно простое. С планетами так не получится. Во-вторых, иногда нам удается заглянуть в недра звезд, хотя пока это касается в основном Солнца.

Книги для чтения по физике звёзд

К счастью, у нас в стране было и остается много хороших астрофизиков, специалистов по звездам. Связано это в основном с тем, что были хорошие физики, которые делали ядерное оружие, а звезды представляют собой природные ядерные реакторы. И когда оружие было сделано, многие физики, в том числе и сибирские, переключились на исследование звезд, потому что объекты в чем-то подобные. И они написали хорошие книги на эту тему.

Посоветую вам две книжки, которые до сих пор, на мой взгляд, остаются лучшими из тех, что на русском языке. «Физика звезд», автор которой – известный физик и талантливый преподаватель Самуил Аронович Каплан, написана почти сорок лет назад, но основы с тех пор не изменились. А современные сведения о физике звезд – в книге «Звезды» из серии «Астрономия и астрофизика», которую мы с коллегами сделали. Она пользуется таким интересом у читателей, что уже тремя изданиями вышла. Есть и другие книги, но в этих двух содержится практически исчерпывающая информация для тех, кто знакомится с предметом. 

Такие разные звезды

Звёздное небо

Если мы посмотрим на звездное небо, то заметим, что звезды имеют разную яркость (видимый блеск) и разный цве. Понятно, что блеск может быть делом случая, поскольку одна звезда ближе, другая – дальше, по нему трудно сказать, какова звезда на самом деле. А вот цвет нам о многом рассказывает, потому что чем выше температура тела, тем дальше в голубую область сдвигается максимум в спектре излучения. Казалось бы, мы можем просто на глаз оценить температуру звезды: красная – холодная, голубая – горячая. Как правило, это действительно так и есть. Но иногда возникают и ошибки, связанные с тем, что между звездой и нами есть какая-то среда. Иногда она очень прозрачная, а иногда не очень. Всем известен пример с Солнцем: высоко над горизонтом оно белое (мы его называем желтым, но для глаза оно почти белое, потому что его свет нас ослепляет), но Солнце краснеет, когда восходит или заходит за горизонт. Очевидно, что не у самого Солнца меняется температура поверхности, а среда изменяет видимый цвет, и об этом надо помнить. К сожалению, для астрономов это большая проблема – угадать, насколько изменился цвет, т.е. видимая (цветовая) температура звезды, за счет того, что ее свет прошел сквозь межзвездный газ, атмосферу нашей планеты и прочие поглощающие среды. 

Принципиальная схема прибора для спектрального анализа)

Спектр звездного света – характеристика намного более надежная, потому что его трудно сильно исказить. Все, что мы знаем сегодня о звездах, мы прочитали в их спектрах. Исследование звездного спектра – это огромная, тщательно отработанная область астрофизики.

Интересно, что менее двухсот лет назад один известный философ, Огюст Конт, сказал: «мы уже многое узнали о природе, но есть такое, что мы не узнаем никогда – это химический состав звезд, потому как их вещество никогда не попадет к нам в руки». Действительно, в руки к нам вряд ли оно когда-нибудь попадет, но прошло буквально 15—20 лет и люди изобрели спектральный анализ, благодаря которому о химическом составе, как минимум, поверхности звезд мы узнали практически все. Так что никогда не говори «никогда». Напротив, всегда найдется способ сделать то, во что ты поначалу не веришь.

Спектр абсолютно черного тела при разных температурах

Но прежде чем говорить о спектре, посмотрим еще раз на цвет звезды. Мы уже знаем, что максимум интенсивности в спектре с увеличением температуры смещается в голубую область, и это надо использовать. И астрономы научились это использовать, потому что снять полный спектр – дело очень затратное. Нужен большой телескоп, длительное время наблюдения, чтобы накопить достаточно света на разных длинах волн – и при этом получить результат лишь для одной исследуемой звезды. А цвет можно очень просто измерять, причем делать это для многих звезд одновременно. И для массового статистического анализа мы просто фотографируем их два-три раза через разные светофильтры с широким окном пропускания.

Центры полос пропускания светофильтров B и V на фоне спектров излучения

Обычно двух фильтров – Blue (B) и Visual (V) – уже достаточно, чтобы в первом приближении определить температуру поверхности звезды. Например, есть у нас три звезды, у которых разные температуры поверхности, цвет у всех разный . Если одна из них будет типа Солнца (температура около 6 тыс. градусов), то на обоих снимках она будет примерно одинаковой яркости. Однако свет более холодной звезды будет сильнее гаситься B-фильтром, сквозь него будет мало длинноволнового света проходить, поэтому она будет казаться нам «слабенькой» звездочкой. А с более горячей звездой дело будет обстоять прямо противоположным образом.

Но бывает мало двух фильтров. Всегда можно ошибиться, как с Солнцем на горизонте. Астрономы обычно 3 окна пропускания используют: Visual, Blue, и третье – Ultraviolet, на границе прозрачности атмосферы. Три снимка уже вполне точно говорят нам о том, в какой мере межзвездная среда ослабляет свет каждой звезды, и какова собственная температура поверхности звезды. Для массовой классификации звезд такая 3-х полосная фотометрия – пока единственный способ, позволивший изучить более миллиарда звезд.

Вселенская паспортизация звезд

Спектры химических элементов в видимой области

Но спектр, конечно, гораздо полнее характеризует звезду. Спектр представляет собой «паспорт» звезды, потому что спектральные линии говорят нам об очень многом. К словам «спектральные линии» мы все привыкли, представляем, что это такое (слайд 08 – спектры химических элементов в видимой области). По горизонтальной оси – длина волны, связанная с тем, на какой частоте излучается свет. Но каково происхождение формы линий, почему они выглядят как прямые вертикальные черточки, а не кружочки, треугольники или какие-нибудь загогулинки?

Спектральная линия – это монохроматическое изображение входной щели спектрографа. Если бы я сделал щель в виде крестика, то получился бы набор крестиков разного цвета. О таких простых вещах физик на третьем курсе, по-моему, должен задумываться. Или, как в армии, сказали «линия» – значит линия? Отнюдь не всегда это линия, потому что в спектрографе не обязательно используется входная щель, хотя, как правило, входное отверстие – это вертикальная прямоугольная щель, так удобнее.

В схеме любого спектрографа всегда есть диспергирующий элемент; в этом качестве может выступать призма или дифракционная решетка. Звезда – облачко горячего газа – испускает характерный набор квантов разных частот. Мы пропускаем их через входную щель и диспергирующий элемент и получаем изображения щели в разных цветах, упорядоченно расположенные по длине волны.

Горячий газ испускает лучи с дискретным спектром Электропроводящий материал генерирует сплошной спектр Как получается спектр поглощения

Если излучают свободные атомы химических элементов, то спектр получается линейчатый. А если взять в качестве источника излучения горячую спираль лампы накаливания, тогда получится спектр непрерывный. Почему так? В металлическом проводнике нет характерных уровней энергии, там электроны, бешено двигаясь, излучают на всех частотах. Поэтому спектральных линий так много, что они перекрываются друг с другом и получается континуум – непрерывный спектр.

А вот теперь берем источник непрерывного спектра и пропускаем его свет через облачко газа, но более холодного, чем спиралька. В этом случае облачко выхватывает из непрерывного спектра те фотоны, энергия которых соответствует переходам между энергетическими уровнями в атомах этого газа. И на этих частотах мы получаем в сплошном спектре вырезанные линии, «дырочки» – получается спектр поглощения. Но атомы, которые поглотили световые кванты, стали менее устойчивыми и рано или поздно их излучают. Почему же спектр продолжает оставаться «дырявым»?

Потому что атому все равно куда выбрасывать «лишнюю» энергию. Происходит спонтанное излучение в разных направлениях. Некоторая доля фотонов летит, конечно же, и вперед, но, в отличие от вынужденного излучения лазера, она мизерная.

При работе со спектром поглощения его делают настолько сильно растянутым, что приходится резать его на кусочки и складывать стопочкой от крайнего красного к крайнему фиолетовому концу

Спектральные линии обычно весьма широкие и распределение яркости внутри них неравномерное. На это явление тоже надо обратить внимание и исследовать, с чем оно связано.

Есть много физических факторов, делающих спектральную линию широкой. На графике распределения яркости (или поглощения) можно, как правило, выделить два параметра: центральный максимум и характерную ширину. Ширину спектральной линии принято измерять на уровне половины интенсивности максимума. И ширина, и форма линии могут рассказать нам о каких-то физических особенностях источника света. Но о каких?

Предположим, мы подвесили одиночный атом в вакууме и никак не трогаем его, не мешаем ему излучать. Но даже в этом случае в спектре будет ненулевая ширина линий, ее называют естественной. Она возникает из-за того, что процесс излучения ограничен во времени, у разных атомов от 10⁻⁸ до 10⁻¹⁰ с. Если вы синусоиду электромагнитной волны «обрежете» на концах, то это уже будет не синусоида, а кривая, раскладывающаяся в набор синусоид с непрерывным спектром частот. И чем короче время излучения, тем шире спектральная линия.

Механизм теплового уширения спектральной линии

В природных источниках света есть и другие эффекты, которые уширяют спектральную линию. Например, тепловое движение атомов. Поскольку излучающий объект имеет ненулевую абсолютную температуру, его атомы хаотически движутся: половина – к нам, половина – от нас, если смотреть лучевую проекцию скорости. В результате доплеровского эффекта излучение первых сдвигается в голубую сторону, других – в красную сторону. Это явление называется доплеровским тепловым уширением спектральной линии.

Доплеровское уширение может быть и по другим причинам. Например, в результате макроскопического движения вещества. Поверхность любой звезды кипит: конвективные потоки горячего газа поднимаются из глубин, остывшего – опускаются. Одни потоки в момент снятия спектра движутся к нам, другие — от нас. Конвективный эффект Доплера иногда бывает более сильным, чем тепловой.

Когда мы смотрим на фотографию звездного неба, нам трудно понять, какова величина звезд на самом деле. Например, есть красная и голубая. Если бы я ничего не знал о них, я бы мог подумать так: у красной звезды не очень высокая температура поверхности, но, если я вижу ее довольно яркой, следовательно, она близко ко мне расположена. Но тогда с определением относительной дальности до голубой звезды, которая светит слабее, у меня возникнет проблема. Я размышляю: так, голубая – значит горячая, но мне не понять, близко или далеко она от меня. Ведь она может быть большого размера и излучать большую мощность, но находиться столь далеко, что света оттуда приходит мало. Или же, напротив, она может светиться так слабо, потому что очень маленькая, хотя и близкая. Как же отличить звезду большую от звезды маленькой? Можно ли по спектру звезды определить ее линейный размер?

Спектры звезд карликов и гигантов различаются шириной спектральных линий

Казалось бы, нет. Но, тем не менее это возможно! Дело в том, что маленькие звезды плотные, а у больших атмосфера разрежена, поэтому газ в их атмосферах находится в разных условиях. Когда мы получаем спектры так называемых звезд-карликов и звезд-гигантов, то сразу же видим различия в характере спектральных линий (слайд 16 – Спектры звезд карликов и гигантов различаются шириной спектральных линий). В разреженной атмосфере гиганта каждый атом летает свободно, редко встречая соседей. Излучают все они практически одинаково, поскольку не мешают друг другу, так что спектральные линии гигантов имеют близкую к естественной ширину. А вот карлик – звезда массивная, но очень маленькая и, значит, с очень высокой плотностью газа. В ее атмосфере атомы постоянно взаимодействуют друг с другом, мешая излучать соседу на строго определенной частоте: потому что у каждого есть свое электрическое поле, которое влияет на поле соседа. Из-за того, что атомы находятся в разных условиях окружения, происходит так называемое штарковское уширение линии. Т.е. по форме, как говорят, «крыльев» спектральных линий мы сразу угадываем плотность газа на поверхности звезды и ее типичный размер.

Вращение звезды приводит к уширению спектральных линий

Доплеровский эффект может проявляться и из-за вращения звезды в целом. Мы не можем различить края удаленной звезды, она для нас выглядит как точка. Но от приближающегося к нам края все линии спектра испытывают голубое смещение, от удаляющегося от нас – красное (слайд 18 – Вращение звезды приводит к уширению спектральных линий). Складываясь, это приводит к уширению спектральной линии. Оно выглядит не так, как эффект Штарка, по-другому меняет форму спектральной линии, поэтому можно угадать, в каком случае на ширину линии повлияло вращение звезды, а в каком – плотность газа в атмосфере звезды. Фактически это единственный способ измерения скорости вращения звезды, потому что звезд в виде шариков мы не видим, все они для нас – точки.

Орбитальное движение звезды проявляется в периодическом изменении спектра

Движение звезды в пространстве тоже влияет на спектр из-за эффекта Доплера. Если две звезды движутся вокруг друг друга, оба спектра от этой пары смешиваются и ходят один на фоне другого. Т.е. периодическое смещение линий туда-сюда – признак орбитального движения звезд.

А что мы из серии меняющихся во времени спектров можем получить? Мы измеряем скорость (по амплитуде смещения), орбитальный период, а по этим двум параметрам, пользуясь третьим законом Кеплера, рассчитываем суммарную массу звезд. Иногда по косвенным признакам удается разделить эту массу между компонентами двойной системы. В большинстве случаев это единственный способ измерить массу звезд.

Кстати, диапазон масс звезд, которые мы изучили на сегодняшний день, не очень велик: разница составляет немногим больше 3 порядков величины. Наименее массивные звезды – порядка десятой доли массы Солнца. Еще меньшая масса не позволяет им запускать термоядерные реакции. Наиболее массивные звезды, которые мы недавно обнаружили – массой в 150 солнечных. Это уникумы, таких пока только 2 штуки известно из нескольких миллиардов.

Алгол – пара звезд, которые попеременно затмевают одна другуюПериодическое изменение блеска звезды – признак затмений в двойной системе. Справа – модель, слева – кривая блеска во времени

Наблюдая редкие двойные системы, в орбитальной плоскости которых мы находимся, мы тоже можем многое узнать об этой паре звезд, используя только наблюдательные характеристики, т.е. которые мы можем непосредственно увидеть, а не рассчитать на основе каких-то законов. Поскольку мы не различаем их поодиночке, мы видим просто источник света, блеск которого время от времени меняется: происходят затмения, пока одна звезда проходит на фоне другой. Более глубокое затмение означает, что холодная звезда закрыла собой горячую, а менее глубокое – наоборот, горячая закрыла собой холодную (закрытые площади одинаковы, поэтому глубина затмения зависит только от их температуры). Помимо орбитального периода мы измеряем светимость звезд, из которой определяем их относительную температуру, а по длительности затмения рассчитываем размер.

Так выглядело бы в едином масштабе Солнце рядом с Юпитером, Сатурном и более мелкими планетами, если поместить их на одном расстоянии от зрителя Относительный реальный размер ближайших звезд и Юпитера Есть звезды намного мельче и намного крупнее Солнца

Размер звезд, как мы знаем, огромен. По сравнению с планетами они просто гигантские. Солнце – самое типичное по размеру среди звезд, наравне с такими давно известными, как Альфа Кентавра и Сириус. Но размеры звезд (в отличие от их масс) укладываются в огромный диапазон – 7 порядков величины. Есть звезды заметно меньше них, одна из самых мелких (и одновременно одна из самых близких к нам) – Проксима, она чуть больше Юпитера. А есть звезды намного крупнее, причем на некоторых стадиях эволюции они раздуваются до невероятных размеров и становятся заметно больше всей нашей планетной системы.

Пожалуй, единственная звезда, диаметр которой мы измерили напрямую (благодаря тому, что она недалеко от нас), – это сверхгигант Бетельгейзе в созвездии Орион, на снимках телескопа «Хаббл» она не точка, а кружок (слайд 26 – Размер звезды Бетельгейзе в сравнении с диаметрами орбиты Земли и Юпитера. Фото космического телескопа "Хаббл"). Если эту звезду поставить на место Солнца, она «съест» не только Землю, но и Юпитер, полностью накроет его орбиту.

Но что мы вообще называем размером звезды? Между какими точками мы звезду измеряем? На оптических снимках звезда четко ограничена в пространстве, и кажется, что вокруг ничего нет. Значит, сфотографировали Бетельгейзе в видимом свете, приложили линейку к изображению – и готово? Но это, оказывается, еще не все. В дальнем инфракрасном диапазоне излучения  видно, что атмосфера звезды тянется гораздо дальше, испускает из себя потоки. Надо полагать, что это и есть граница звезды? Но переходим в микроволновый диапазон – и видим, что атмосфера звезды протянулась почти на тысячу астрономических единиц, в несколько раз крупнее всей нашей Солнечной системы.

Звезда Бетельгейзе выглядит разных размеров и форм, если фотографировать ее в оптическом, дальнем инфракрасном и микроволновом диапазонах излучения. На последнем снимке центр звезды закрыт черным кружком, внутри которого в том же масштабе помещено предыдущее изображение

Звезда в общем случае – это газовое образование, которое не замкнуто в жестких стенках (в космосе их нет) и поэтому не имеющее границ. Формально, любая звезда простирается бесконечно (точнее, пока не достигнет соседней звезды), интенсивно испуская газ, который называют звездным ветром (по аналогии с солнечным ветром). Поэтому, говоря о размере звезды, всегда нужно уточнять, в каком диапазоне излучения мы его определяем, тогда будет более понятно, о чем речь.

Гарвардская классификация спектров

В оптическом диапазоне спектра солнечного света содержатся десятки тысяч линий, по которым можно расшифровать элементный состав солнечной атмосферы

Настоящие спектры звезд, несомненно, очень сложны. Они совсем не похожи на спектры отдельных химических элементов, которые мы привыкли видеть в справочниках. Например, даже в узком в оптическом диапазоне солнечного спектра – от фиолетовой области до красной, который наш глаз как раз и видит, – линий очень много, и разобраться в них совсем не просто. Узнать даже на основе детального, высокодисперсного спектра, какие химические элементы и в каком количестве присутствуют в атмосфере звезды – большая проблема, которую астрономы до конца не могут решить.

Глядя на спектр, мы сразу увидим выделяющиеся бальмеровские линии водорода (Hα, Hβ, Hγ, Hδ) и очень много линий железа. Иногда попадается гелий, кальций. Логично сделать вывод, что звезда состоит в основном из железа (Fe) и отчасти из водорода (H). В начале XX века была открыта радиоактивность, и когда люди задумались об источниках энергии звезд, они вспомнили, что в спектре Солнца много линий металлов, и предположили, что распад урана или радия греет внутренности нашего Солнца. Однако оказалось, что это не так.

Первая классификация звездных спектров была создана в Гарвардской обсерватории (США) руками примерно дюжины женщин. Кстати, почему именно женщин – вопрос интересный. Обработка спектров – это очень тонкая и кропотливая работа, для выполнения которой директору обсерватории Э. Пикерингу надо было взять помощников. Женский труд в науке тогда не очень приветствовался и оплачивался намного хуже мужского: на те деньги, которые были у этой небольшой обсерватории, можно было нанять либо двух мужчин, либо дюжину женщин. И тогда впервые в астрономию было призвано большое количество женщин, которые сформировали так называемый «гарем Пикеринга». Созданная ими спектральная классификация была первым вкладом в науку женского коллектива, который оказался гораздо более эффективным, чем ожидалось.

Slide031.JPG

В то время люди вообще не представляли, на основе каких физических явлений формируется спектр, его просто фотографировали. Пытаясь построить классификацию, астрономы рассуждали так: в спектре любой звезды есть линии водорода, по убыванию их интенсивности можно упорядочить все спектры и сгруппировать их. Разложили, обозначив группы спектров латинскими буквами по алфавиту: с самыми сильными линиями – класс A, слабее – класс B и т.д.

Вроде бы все было сделано правильно. Но через несколько лет родилась квантовая механика, и мы поняли, что вовсе не обязательно обильный элемент представлен в спектре мощными линиями, а редкий элемент никак не проявляет себя в спектре. Многое зависит от температуры.

Схема электронных энергетических уровней атома водорода и переходов между ними

Давайте посмотрим на спектр поглощения атомарным водородом: в оптический диапазон попадают линии только бальмеровской серии. Но при каких условиях эти кванты поглощаются? При переходах только со второго уровня вверх. Но в нормальном-то (холодном) состоянии все электроны «сидят» на первом уровне, а на втором почти ничего нет. Значит, нам надо нагреть водород, чтобы какая-то доля электронов запрыгнула на второй уровень (потом они снова вернутся вниз, но перед этим какое-то время там проведут) – и тогда пролетающий оптический квант может быть поглощен электроном со второго уровня, что проявится в видимом спектре.

Итак, холодный водород не будет нам выдавать бальмеровскую серию, а теплый – будет. А если мы еще сильнее нагреем водород? Тогда много электронов запрыгнет на третий и более высокие уровни, а второй уровень снова обеднеет. Очень горячий водород тоже не даст нам спектральных линий, которые мы можем в оптическом диапазоне увидеть. Если пройтись от холодных звезд к самым горячим, то увидим, что линии любого элемента лишь в узком диапазоне температур могут быть достаточно хорошо представлены в спектре.

Для каждой спектральной линии существует температура, при которой она имеет наибольшую интенсивность

Когда астрофизики это поняли, им пришлось переставить спектральные классы в порядке роста температуры: от холодных звезд к горячим. Эта классификация по традиции тоже гарвардской называется, но она уже естественная, физическая. У звезд спектрального класса A температура поверхности около 10 тыс. градусов, водородные линии максимально яркие, а с ростом температуры они начинают исчезать, потому что атом водорода при температуре больше 20 тыс. градусов ионизуется. Аналогично дело обстоит с другими химическими элементами. Кстати, в спектрах звезд холоднее 4000 K присутствуют не только линии отдельных химических элементов, но и полосы, соответствующие устойчивым при таких температурах молекулам сложных веществ (например, оксидов титана и железа).

Типичные спектры звезд ряда спектральных подклассов, характеризующихся температурой поверхности

Получившуюся при упорядочивании классов по температуре последовательность букв OBAFGKM студентам-астрономам довольно просто запомнить, тем более что придуманы всякие мнемонические поговорки. Самая известная на английском – Oh, Be A Fine Girl, Kiss Me! Диапазон температур поверхности таков: у самых горячих звезд – десятки тысяч градусов, у самых холодных – две с небольшим тысячи. Для более тонкой классификации каждый класс разделили на десять подклассов и к каждой букве справа приписали одну цифру от 0 до 9. Замечу, что оптические спектры в цвете фотографируют только для красоты, а для научных исследований это бессмысленно, поэтому обычно делают черно-белые изображения.

Некоторые звезды демонстрируют линии поглощения (темные на ярком фоне), а некоторые – линии излучения (яркие на темном фоне).

Редко, но бывает, что звезды демонстрируют линии не поглощения (темные на ярком фоне), а излучения (яркие на темном фоне). Их происхождение уже не так легко понять, хотя это тоже довольно элементарно. В начале лекции мы видели, что разреженное облачко горячего газа дает нам линии излучения. Когда мы смотрим на звезду с линиями излучения в спектре, мы понимаем, что источником этих линий служит разреженный, полупрозрачный газ, находящийся на периферии звезды, в ее атмосфере. То есть это звезды с протяженной горячей атмосферой, которая прозрачна в континууме (в промежутках между линиями), а значит, почти ничего в нем не излучает (закон Кирхгофа). Но она не прозрачна в отдельных спектральных линиях, а раз не прозрачна в них, то и сильно в них излучает.

Цвет и температура звёзд основных спектральных классов

На сегодняшний день гарвардская классификация звездных спектров расширена. В нее добавлены новые классы, соответствующие горячим звездам с протяженной атмосферой, ядрам планетарных туманностей и новых звезд, а также недавно открытым довольно холодным объектам занимающим промежуточное положение между нормальными звездами и крупнейшими планетами; их называют «коричневыми карликами» или «бурыми карликами» (англ. – brown dwarf). 

Атмосфера Солнца по массе на 98% состоит из водорода и гелия

Есть еще ответвления от некоторых классов для звезд с оригинальным химическим составом. Это, кстати, загадка для нас: до сих пор не ясно, почему у некоторых звезд вдруг наблюдается избыток какого-то редкого химического элемента. Ведь, несмотря на разнообразие звездных спектров, химический состав их атмосфер очень схожий: на 98 % по массе Солнце и подобные ему звезды состоят из первых двух химических элементов – водорода и гелия, а все остальные элементы представлены лишь двумя оставшимися процентами массы.

Солнце – самый яркий для нас источник света, его спектр мы можем растянуть очень сильно, различить в нем десятки тысяч спектральных линий и расшифровать их. Так, установлено, что на Солнце присутствуют все элементы таблица Менделеева. Однако, открою вам секрет, до сих пор примерно 20 линий солнечного спектра, очень слабых, остались не идентифицированными. Так что даже с Солнцем проблема распознавания химического состава еще не решена до конца.

Распределение химических элементов в атмосфере Солнца. По горизонтальной оси – атомный номер элемента, по вертикальной оси – относительное число атомов в логарифмической шкале

Распределение химических элементов в атмосфере Солнца обладает рядом интересных закономерностей). Считается, что это типичный состав звездного вещества. И для большинства звезд это верно. Начиная с углерода и до самых тяжелых ядер (по крайней мере, до урана) идет довольно ровный спад распространенности элементов по мере увеличения их порядкового номера. Однако между гелием и углеродом имеется очень сильный провал – так происходит потому, что литий и бериллий легче всех участвуют в термоядерных реакциях, они активнее даже водорода и гелия. И как только температура поднимается выше миллиона градусов, они очень быстро выгорают.

Но и внутри этого ровного тренда есть особенности. Во-первых, резко выделяется пик железа. В природе, в том числе и в звездах, железа, никеля и близких к ним элементов по сравнению с их соседями необычайно много. Дело в том, что железо – необычный химический элемент: это самый конечный продукт термоядерных реакций, идущих в равновесных условиях, т.е. без всяких взрывов. В термоядерных реакциях звезда синтезируют из водорода все более и более тяжелые элементы, но доходит дело до железа – и все останавливается. Дальше, если мы попытаемся из железа что-то сделать новое в термоядерной реакции, добавляя к нему нейтроны, протоны, другие ядра, то никакого выделения тепла не будет: когда костер догорел, из золы уже ничего не получишь. Наоборот, на осуществление реакции пришлось бы подводить энергию извне, а сама по себе никакая реакция с железом в обычных условиях не пойдет. Поэтому железа в природе накопилось много.

Другой важный момент, на который стоит обратить внимание: линия, соединяющая на графике точки, имеет пилообразный вид. Так получается потому, что ядра с четным количеством нуклонов (протонов и нейтронов) гораздо более стабильны, чем с нечетным. Поскольку стабильные ядра легче создать, чем разрушить, этих ядер по сравнению с соседними элементами нарабатывается всегда больше на целый порядок, а то и на полтора.

В отличие от Солнца, в составе земного шара и землеподобных планет содержится очень мало водорода и гелия, но начиная с углерода «звездное» распределение химических элементов характерно и для них. Поэтому у каждой планеты, не только у Земли, есть крупное железное ядро.

Звёзды неоднородны по химическому составу, потому что вещество в них слабо перемешивается

К сожалению, спектры показывают нам состав только поверхности звезд. Наблюдая свет звезды, мы почти ничего не можем сказать о том, что у нее внутри, а внутренняя жизнь звезд разной массы различается. Перенос энергии в звезде происходить несколькими механизмами, преимущественно лучеиспусканием и конвекцией. Например, у звезд типа Солнца в центральной части, где идут термоядерные реакции, энергию в основном переносит излучение, и вещество ядра не перемешивается с вышележащими слоями. На периферии перемешивание идет, но оно не достигает тех внутренних областей, в которых постепенно меняется химический состав за счет термоядерных реакций. Т.е. продукты термоядерной реакции не выносятся на поверхность, тут циркулирует исходное вещество, из которого Солнце родилось когда-то. У более массивных звезд внутри идет конвективное перемешивание, но дальше не распространяется. Выпрыгнуть на поверхность звезды наработанные химические элементы тоже не могут.

Наконец, маломассивные – это самые правильные звезды: конвекция у них – главный механизм переноса тепла, внутри них происходит полное перемешивание вещества. Значит, казалось бы, на их поверхность должно всплывать то, что в центре в термоядерных реакциях наработалось. Однако в этих маленьких звездах очень медленно идут термоядерные реакции, они очень экономно расходуют свою энергию и медленно эволюционируют. Продолжительность их жизни в сотни и тысячи раз больше, чем у звезд типа Солнца, т.е. триллионы лет. А за те 14 млрд лет, что прошли с момента рождения Вселенной, в их составе практически ничего не изменилось. Они еще младенцы, многие из них еще недоформировались и не запустили нормальный термоядерный цикл.

Таким образом, о том, что находится внутри звезд, какой там химический состав вещества, мы не знаем до сих пор, натурных данных у нас нет. Только моделирование нам может что-то об этом сказать.

Диаграмма Герцшпрунга–Рассела

Шкала звездных величин

Видимый блеск звезд измеряют в обратной логарифмической шкале звездных величин (слайд 43), но для физика это неинтересно. Ему важна полная мощность излучения звезды, а ее мы не можем просто так по фотографии угадать.

Звезда Альфа созвездия Кентавра среди других звезд имеет потрясающую яркость

Например, Альфа Кентавра среди других звезд имеет потрясающую яркость, но это вовсе не значит, что она самая мощная, ничего подобного. Это совершенно обычная звезда типа Солнца, просто по случаю она оказалась к нам намного ближе остальных и поэтому как фонарь заливает своим светом окрестный кусочек неба, хотя большинство соседних с ней на этом фото звезд представляют собой гораздо более мощные источники излучения, но они расположены дальше.

Итак, надо оценить мощность звезды как можно более точно. Для этого мы используем фотометрический закон обратных квадратов: измеряя видимую яркость звезды (плотность светового потока, достигающего Земли) и расстояние до нее, вычисляем полную мощность ее излучения в ваттах. Теперь можно представить общую физическую картину, изобразив все звезды на двумерной диаграмме (слайд 46), на осях которой откладывают две выведенные из наблюдений величины – температуру поверхности звезды и относительную мощность ее излучения (астрономы, принимая во внимание только оптический диапазон, называют эту мощность светимостью и измеряют в единицах мощности Солнца). В начале XX века такую картинку впервые построили два астронома, по именам которых она называется диаграммой Герцшпрунга–Рассела.

Ограниченное разнообразие звёзд по температуре и светимости

Солнце, звезда с температурой около 6000 K и с единичной мощностью, располагается почти посередине этой диаграммы. Вдоль диапазона изменения обоих параметров звезды распределены практически непрерывно, но по плоскости диаграммы они не как попало разбросаны, а группируются в компактные области.

Сегодня на диаграмме Герцшпрунга–Рассела выделяют несколько типичных групп, в которых сконцентрированы наблюдаемые в природе звезды (слайд 47). Подавляющее большинство звезд (90%) лежит в узкой полосе по диагонали диаграммы; эту группу называют главной последовательностью. Она распространяется от тусклых холодных звезд до горячих яркосветящихся: от миллионных долей до нескольких миллионов солнечных светимостей. Для физика это естественно: чем горячее поверхность, тем сильнее она излучает.

Звёзды разных классов на диаграмме Герцшпрунга–Рассела

По обе стороны от главной последовательности находятся группы аномальных звезд. Некоторое количество звезд с высокой температурой обладают необычно низкой светимостью (в сотни и тысячи раз меньше солнечной) из-за своего мелкого размера – мы называем их белыми карликами, такие они по цвету. Другие исключительные звезды, в противоположном углу диаграммы, характеризуется более низкой температурой, но огромной светимостью – значит, они явно имеют больший физический размер, это гиганты.

В процессе своей эволюции звезда может менять положение на диаграмме. Об этом – в одной из следующих лекций.


Задать вопрос Владимиру Сурдину

Понравилось? Поделись с друзьями!

Подпишись на еженедельную e-mail рассылку!

comments powered by HyperComments