
Реактивные самолеты будущего
Уже определены перспективы создания нового поколения самолетов, летающих с скоростями, в 5–15 раз превосходящими звуковую, а также самолетов, взлетающих с обычных аэродромов, выходящих с космической скоростью в околоземное пространство и возвращающихся обратно. Для этого необходимо развивать новые технологии, совершенно отличные от тех, которые присущи вертикально взлетающим ракетно-космическим системам и современным самолетам.
С этой публикации ученые из Института теоретической и прикладной механики СО РАН (Новосибирск) начинают знакомить наших читателей с научно-техническими исследованиями и проектами, связанными с гиперзвуковыми и воздушно-космическими самолетами будущего
Извечная мечта человечества – чтобы
«люди летали как птицы» – к XXI веку
сменилась на более соответствующую
духу времени: «если бы самолеты
летали как космические ракеты!»
Cоздание космических ракет стало одним из самых впечатляющих достижений человечества в прошедшем двадцатом веке. Благодаря им человеку удалось преодолеть земное притяжение и выйти в космическое пространство – освоить околоземные орбиты, осуществить полеты на Луну, запустить аппараты-зонды на другие планеты.
Используя возможности комбинированной работы двигателей при разных числах Маха (М)*, такая силовая установка выводит космический корабль из атмосферы на околоземную орбиту при М 20, когда включаются два высотных ЖРД.
Стартовый вес 150–250 тонн, полезная нагрузка 6–11 тонн
А можно ли создать самолеты, которые по скорости были бы сравнимы с ракетами? Ракеты выходят в космос, преодолевая толщу земной атмосферы благодаря сверхвысоким скоростям, достигающим первой космической**. Современная авиация пока не преодолела барьер 1/8 первой космической. Максимальная скорость боевых реактивных самолетов лишь втрое превышает скорость звука (около 3500 км/час). Пассажирские авиалайнеры летают с дозвуковой скоростью (менее 1000 км/час), уже отлетавшие сверхзвуковые «Конкорд» и Ту 144 имели крейсерскую скорость только примерно вдвое большую.
Запуск орбитальной ступени должен происходить на высоте 24–30 км при скорости, в шесть раз превышающей скорость звука. После схода с околоземной орбиты и планирующего спуска в атмосфере орбитальный аппарат мог совершать посадку на обычный аэродром «по-самолетному», используя турбореактивный двигатель. Взлетная масса всей системы составляла 115 тонн, одноместный орбитальный самолет – 10 тонн
К настоящему времени уже определены перспективы создания в двадцать первом веке нового поколения самолетов, летающих с гиперзвуковыми скоростями, в 5–15 раз превосходящими звуковую, а также воздушно-космических самолетов, взлетающих с обычных аэродромов, выходящих с космической скоростью в околоземное пространство и возвращающихся обратно. Для их создания необходимо развитие новых технологий, совершенно отличных от тех, которые присущи вертикально взлетающим ракетно-космическим системам и современным самолетам.
В рамках программы NASP рассматривалась возможность создания гиперзвукового пассажирского самолета Orient Express, рассчитанного на 200–300 пассажиров для полетов на межконтинентальных маршрутах дальностью 9000–13000 км.
Orient Express мог бы преодолевать расстояние Нью-Йорк – Париж за 2 часа, Вашингтон – Токио за 3 часа. Время полета сверхзвукового Concorde от Нью-Йорка до Парижа составляло около 3 часов
«Ключевым элементом» создания таких аппаратов является разработка воздушно-реактивной силовой установки, экономичной и работающей в беспрецедентно широком диапазоне скоростей – от дозвуковых до гиперзвуковых. Для такой силовой установки может быть эффективно использовано ракетное горючее – жидкий водород, для которого тепловая энергия, выделяемая при сжигании, является максимальной. Его запасы в природе практически неисчерпаемы, он может вырабатываться как из углеводородных ископаемых, так и из воды. Водород – экологически чистое топливо, при его сгорании образуется обыкновенная вода.
Экспериментальный ВКС мог обеспечить проведение летного эксперимента для исследования сложнейших процессов в ГПВРД и аэротермодинамических явлений, возникающих при числах М > 6–8, вплоть до выхода в космос.
Макет самолета Ту-2000 был показан на выставке «Мосаэрошоу-92». В том же 1992 г. проектные разработки были приостановлены.
В настоящее время исследовательские и экспериментальные работы по ВКС продолжаются в Авиационном научно-техническом комплексе им. А. Н. Туполева
Проведенные к настоящему времени научно-технические исследования дают представление о том, какими будут гиперзвуковые и воздушно-космические самолеты будущего. Прежде всего, аэродинамические формы гиперзвуковых самолетов будут существенно отличаться как от тех, которые используются для ракетно-космических аппаратов, так и от современных до- и сверхзвуковых реактивных самолетов. Конфигурации гиперзвуковых воздушно-реактивных аппаратов становятся интегрированными, крыло и фюзеляж объединяются в единый несущий корпус, к которому в свою очередь примыкают воздухозаборник и сопло двигателя. Такого рода конфигурации являются пока еще малоизученными, но уже теперь ясно, что они обеспечивают высокую аэродинамическую эффективность и улучшают летные свойства аппаратов при сверхвысоких скоростях.
27 декабря 1991 на ней впервые в мире было проведено летное испытание водородного ГПВРД при скорости полета равной 1653 м/с (в 5,6 раза превышающей скорость звука) и в течение последующих 7 лет было выполнено пять испытательных полетов
К сожалению, создание гиперзвуковых и воздушно-космических самолетов военного назначения и тем более гражданского – дело еще далекого будущего. Но гиперзвуковые крылатые ракеты и экспериментальные аппараты с ГПВРД полетят в ближайшие 10–15 лет.
Дозвуковой турбореактивный самолет В‑52В выводит ракету Pegasus на высоту около 5.7 км, после чего она отделяется и разгоняется с набором высоты около 29 км. Далее отделяется сам аппарат Х‑43, и его ГПВРД запускается на время не более 10 сек, разгоняя X-43 до скорости, соответствующей числам Маха М = 7 или М = 10. После горизонтального испытательного полета происходит торможение и снижение в заданную зону падения, где аппарат спасается с помощью парашюта.
Первые успешные летные испытания аппарата Х-43А были выполнены в конце марта 2004 г., когда аппарат разогнался до скорости, в семь раз превышающей скорость звука. Во время испытаний в ноябре 2004 г. скорость Х-43А превысила скорость звука в десять раз
Для этого необходимо проведение научно-технических исследований в этом направлении. Технологии высокого уровня, развиваемые в связи с созданием гиперзвуковых и воздушно-космических самолетов, могут найти широкое применение в народном хозяйстве, неавиационных промышленных отраслях.
К настоящему времени в ИТПМ накоплен большой методический опыт испытаний и выполнен ряд исследований работающих моделей прямоточных двигателей различных конфигураций и их элементов
* Число Маха представляет собой отношение скорости полета летательного аппарата к скорости звука
** Скорость, которую надо сообщить телу при запуске с какой-либо планеты, чтобы оно стало ее искусственным спутником, называют первой космической. Для искусственного спутника Земли, движущегося у самой ее поверхности, v1 = 7,9 км/с
Авторы и редакция благодарят АНТК им. А. Н. Туполева, ЦИАМ и ЛИИ, НПО «Молния» за предоставленные иллюстративные материалы
