• Читателям
  • Авторам
  • Партнерам
  • Студентам
  • Библиотекам
  • Рекламодателям
  • Контакты
  • Язык: English version
2005
СМОТРЯЩИЙ В ОГОНЬ # Памяти Михаила Александровича Грачева
Химия

СМОТРЯЩИЙ В ОГОНЬ
Памяти Михаила Александровича Грачева

Восемь лет назад академик М. А. Грачев написал для журнала «НАУКА из первых рук» статью «Смотрящие в огонь» как ответ на реформу российской науки. Сегодня мы вновь публикуем (в сокращении) этот материал: в наши дни слова автора о роли и месте фундаментальной науки в обществе, о людях, которые способны совершать открытия, меняющие мир, и о том, что у науки свои законы развития и нет государственных границ, становятся особенно актуальными

СМОТРЯЩИЕ В ОГОНЬ

…Наша общая задача – сохранить тончайший слой «смотрящих в огонь» и способных делать фундаментальные открытия молодых и не очень молодых ученых. Им надо дать возможность спокойно работать. Во имя этой важнейшей задачи наука и власть обязаны найти общий язык, и сделать это нужно как можно скорее

Товарищ, верь: взойдет она,
Звезда пленительного счастья…

А. С. Пушкин

В 2014 г. начата реформа российской науки. Многие мои коллеги этого очень испугались. Я же верю, что все будет хорошо (см. эпиграф). Надо просто найти общий язык с властью. В романах американского писателя Курта Воннегута приводятся короткие вставки – сюжеты научной фантастики. В одном из сюжетов на Землю из далекой галактики прилетает пришелец, чтобы сообщить землянам важнейшую информацию. Ростом пришелец был примерно полметра и походил на палку с конусом внизу. Приземлился он в огороде какого-то фермера. Он отбивал чечетку и попукивал, и фермер сразу его убил. А жаль – пришелец хотел сообщить человечеству, как избежать мировых войн, лечить рак, а также сказать фермеру, что у него горит дом. Контакт не состоялся. Причина же была проста: чечетка и попукивание – это был язык пришельца, и фермер его не понял. Надо искать общий язык. Такие дела.

Будущий академик М. А. Грачев на выставке в Госплане СССР с президентом АН СССР академиком А. П. Александровым и чл.-кор. АН СССР В. П. Мамаевым, 1979 г. Фото Р. И. Ахмерова

В Общероссийском классификаторе видов экономической деятельности наука и научное исследование отнесены к сфере услуг… Фундаментальная наука не является услугой. Она мотивируется не возможностью получения прибыли, а совсем другим. Для того чтобы объяснить это, придется рассмотреть несколько известных исторических примеров.

В 1929 г., изучая микробов, английский ученый Флеминг заметил, что они гибнут при воздействии неизвестного вещества, выделяемого простой хлебной плесенью. Это вещество впоследствии было названо пенициллином. Флеминг установил, что вещество из плесени убивает очень широкий круг микробов, в том числе весьма опасных для человека, например, синегнойную палочку, которая вызывает гангрену. Окончив исследования, он, однако, указал, что результат этого открытия никогда не станет важным для практики, поскольку пенициллин чрезвычайно неустойчив.

Через 10 лет англичане Флори и Чейн нашли способ очистки пенициллина и его получения в твердом состоянии, в результате антибиотик стал устойчивым и пригодным к практическому применению. Было налажено промышленное производство пенициллина.

Интересно, что Флеминг отказался от подачи заявки на патент и не разрешил патентовать пенициллин своим партнерам. Сделал он это для того, чтобы избежать любых препятствий для постановки производства пенициллина в любых странах и в любых компаниях, то есть его целью было не получение вознаграждения. Он хотел другого. Он хотел, чтобы пенициллин как можно скорее стал доступным людям всей планеты. В результате пенициллин начали производить сразу в нескольких странах. Уже в 1944 г. благодаря пенициллину удалось спасти сотни тысяч жизней раненых английских и американских солдат, участвовавших в открытии второго фронта, в грандиозном сражении после высадки десанта союзников из Англии на континент для того, чтобы покончить с Гитлером. В том же 1944 г. пенициллин стали производить и в СССР, где он тоже спас много солдатских жизней.

Продолжим исторические примеры. В 1938 г. германские ученые Ган, Штрассман и Мейтнер открыли деление ядра изотопа урана 235. Они установили, что при попадании так называемого «медленного нейтрона» ядро урана 235 расщепляется на две приблизительно равные части с выделением огромной энергии.

Ядерная физика в то время была в отношении всей физики маргинальной, по всему миру ею занималось всего несколько человек. Ведь еще в 1920-е гг. великий физик Резерфорд, осознавший невообразимо огромную энергию, выделяющуюся при распаде атома природных радиоактивных элементов, заявил, что эту энергию никогда не удастся использовать на практике, поскольку ее потоком нельзя управлять: нельзя включить или выключить ее источник радиоактивности по мере необходимости, а уже выделившуюся энергию нельзя сохранить. Но великий Резерфорд оказался неправ.

Еще важнее был вывод Гана, Штрассмана и Мейтнер о том, что распад одного ядра урана рождает множество медленных нейтронов, которые попадают в другие ядра урана и вызывают их распад. Если масса урана 235 больше критической, возникает цепная реакция и происходит ядерный взрыв. Все коллеги этих ученых – умные ядерные физики в Германии, США, Англии, России и в других странах – сразу же поняли, что расщепление урана открывает прямой путь к созданию инновационного сверхоружия.

Никто не давал Гану, Штрассману и Мейтнер заказ на расщепление ядра урана, да и кто мог его дать? Гитлер? Они все сделали сами. И за очень маленькие деньги. Было бы нелепо предполагать, что они хотели оказать кому-то услугу – ведь они сами не знали, что получится из их опытов, они просто исследовали устройство природы.

Отто Ган и Лиза Мейтнер в лаборатории (слева). 1913 г. Справа – Лиза Мейтнер. 1900 г. Public domain

Прикладная стадия в этот раз не замедлила наступить. Многие физики, английские, американские, германские, изгнанные Гитлером и осевшие в Англии, Америке, Канаде, сразу же поняли, что Гитлер имеет шанс получить сверхоружие, и все обычные вооружения будут против этого сверхоружия бессильны. Они не хотели такого поворота мировой истории.

В 1939 г. после нападения Германии на Польшу официально началась Вторая мировая война. Международная команда физиков объяснила ситуацию Эйнштейну, жившему тогда в Америке, и он подписал составленное физиками письмо Президенту США Рузвельту. Рузвельт поверил Эйнштейну – ведь Эйнштейн был ученым номер один того времени, и Рузвельт приказал своим ведомствам немедленно начать работы по созданию атомной бомбы. В Англии к разработке такого же проекта в режиме глубочайшей секретности приступили немного раньше, но потом ядерщики из США, Англии и Канады и физики-эмигранты из многих стран мира объединились в США, где стартовал так называемый «Манхэттенский» ядерный проект.

…Занимавшиеся фундаментальной ядерной физикой российские ученые в Ленинграде, Москве и Харькове мгновенно поняли результаты Гана, Штрассмана и Мейтнер и осознали возможность создания атомной бомбы. А ведь уже и в то время нашу науку могли оптимизировать – закрыли бы ядерную физику как экономически бесполезную, и Гана, Штрассмана и Мейтнер не то чтобы воспроизвести, даже понять было бы некому.

22 июня 1941 г. началась Великая Отечественная война, и многие ядерные физики, бывшие искренними патриотами, сменили свой профиль и занялись военными работами, например, размагничиванием наших кораблей. И все-таки незадолго до войны в Ленинграде было начато и уже во время войны, во время блокады Ленинграда, закончено строительство первого советского циклотрона – важнейшего инструмента ядерной физики.

Об интереснейшей истории создания советского атомного оружия написано много, и я не буду повторяться. Для справедливости только отмечу, что вошедшее в обиход мнение, согласно которому решающий вклад в создание нашей атомной бомбы внесла Академия наук СССР, не совсем верно. Академия наук и Высшая школа сыграли решающую роль лишь в одном отношении – они поняли проблему, наметили пути ее решения и добились внимания правительства. Прикладная фаза проекта была настолько засекречена, что об участии АН СССР в целом в работах не могло быть и речи. Другое дело, что в создании нашей атомной бомбы принимали участие виднейшие и самые умные члены АН СССР, но работали они не в Академии, а в закрытых атомных городах.

Так или иначе в 1949 г. первая наша атомная бомба была взорвана, а ведь в США уже были намечены 100 советских городов – первоочередных объектов атомной бомбардировки, и изготовление первых 100 атомных бомб шло полным ходом. К счастью, атомная демократизация СССР не состоялась, и мир прожил уже многие десятилетия без новой мировой войны только благодаря созданию советского атомного оружия. Такая вот услуга.

Третий пример – двойная спираль …В 1870 г. швейцарский ученый Мишер выделил вещество, позднее названное ДНК, из гнойных бинтов, которыми перевязывали раненых во время франко-прусской войны. На то чтобы понять устройство ДНК, ушли многие годы работ химиков в разных странах.

Оказалось, что ДНК представляет собой полимер с огромной молекулярной массой, ее звенья – беспорядочно разбросанные вдоль полимерной цепи ныне знаменитые нуклеотиды А, G, C, Т. В результате развития Манхэттенского ядерного проекта появился новый мощный метод разделения веществ – анионообменная хроматография, благодаря которой американский ученый Чаргафф установил, что в ДНК число остатков А всегда равно числу остатков Т, а число остатков G всегда равно числу остатков С. Это «правило Чаргаффа» впоследствии стало одним из краеугольных камней модели двойной спирали ДНК. Параллельно шло развитие генетики, и многие ученые пришли к выводу, что веществом наследственности является длинный полимер, молекула которого при делении клетки копируется в материнской клетке, и одна из копий передается дочерней клетке.

…В гипотезу о роли ДНК в наследственности горячо поверил очень молодой американский аспирант Уотсон, который каким-то образом проник в знаменитую рентгеноструктурную лабораторию профессора Брегга в Англии, где изучали растянутые нити многих полимеров, в том числе и ДНК. Рассматривая рентгенограммы английских коллег, он стал фантазировать и предлагать модели ее конструкции. В свои размышления и поиски он вовлек бывшего военного инженера и блестящего ученого Крика.

Вскоре благодаря использованию правила Чаргаффа им удалось построить удивительно элегантную модель ДНК, подобную винтовой лестнице, состоящей из двух спиралей, в качестве ступеней которой выступали стоящие друг против друга остатки А и Т либо G и C. Модель Уотсона и Крика полностью соответствовала рентгеноструктурным данным англичан. Более того, можно было легко себе представить, что после разборки лестницы на одиночные спирали происходит копирование – на материнской цепочке ДНК может выстраиваться ее копия, причем в этой копии остатки А опять будут стоять напротив остатков Т, а остатки G – напротив остатков C.

Джеймс Уотсон, Фрэнсис Крик и их модель ДНК. 1953 г. © SPL/East News

Соавтором научной публикации, вышедшей в 1953 г. (год смерти Сталина), по праву стал английский ученый Уилкинс, который руководил экспериментальными работами по рентгеноструктурному анализу ДНК. Через девять лет, в 1962 г. все трое получили Нобелевскую премию. И опять никто не давал заказ на эту услугу. Такие дела.

…Несколько слов о советской науке. Наше юное в то время поколение имело ясный лозунг – догнать и перегнать Америку. В 1930-е гг. один из наших токарных станков так и назывался – «ДИП» (догнать и перегнать). В 1961 г. и позднее я тоже участвовал в гонке за Холли, но наша команда в составе представителей трех институтов АН СССР не вполне преуспела. Отечественный рекорд был установлен группой академика Баева, которая в 1967 г. расшифровала химическую формулу валиновой тРНК (78 нуклеотидов) и в 1969 г. праву получила за это Государственную премию СССР (я ничего не получил, по делу).

Без всякой иронии, эта работа, хотя и была сделана под лозунгом ДИП, и в самом деле была выдающейся. Не будем забывать, что в то время еще был жив и активен знаменитый генетик в штатском Лысенко. А Баев провел в сталинских лагерях целых 17 лет. Из автобиографии А. А. Баева: «…1953 г. оказался критическим в моей жизни – умер И. Сталин, истинный автор всех бед, постигших страну и меня, а Д. Уотсон и Ф. Крик открыли двойную спираль ДНК, положив тем самым начало молекулярной биологии, которая и стала полем научной деятельности во второй половине моей жизни. Возврат в науку для меня был нелегким. Мне исполнилось уже 50 лет, и природа оставила мне мало времени для творческой научной деятельности».

Академик А. А. Баев. 1973 г. Фото О. Кузьмина. Источник: «60 фотографий А. А. Баева на сайте ИМБ РАН, http://www.eimb.ru/RUSSIAN/GALLERY/BAYEV/bayev-ph.htm»

Советская «новая биология» рождалась в тяжелые для страны времена и в режиме гонки за мировой наукой. Не будь этих работ, не возникли бы ни отечественная генная инженерия, ни биомедицина, ни оборонная организация «Биопрепарат», о которой будет сказано немного ниже. И мне совсем не стыдно, что мы и сейчас зачастую работаем под тем же лозунгом ДИП. Такие дела.

Как возникла фундаментальная наука и чем мотивированы люди, положившие свою жизнь на алтарь этой сферы деятельности человека? По моим наблюдениям, которые я сделал в течение 50 лет, занятие наукой не зависит ни от политического строя, ни от благополучия страны, ни от разнообразных реформ. Число молодых талантливых людей, приходящих в науку, остается постоянным. Для этого контингента занятие наукой самодостаточно, оно является целью жизни, а не средством для получения потребительских благ. Далеко не все из штатных научных работников являются убежденными и талантливыми исследователями, в некоторые периоды приливов финансирования в науку попадает балласт, для которого наука есть не цель, а средство.

В основе стремления к науке лежит появившийся еще у животных инстинкт – любопытство (инстинкт ориентирования), а может быть, даже и другое врожденное стремление – стремление к игре. Великий американский физик Фейнман, в молодости участник Манхэттенского проекта, в зрелости – создатель квантовой электродинамики, за которую он в 1965 г получил Нобелевскую премию, по совместительству – блестящий популярный лектор и музыкант-барабанщик, представлял себе появление науки приблизительно так.

Первобытные люди. Ночь. Все племя спит, но несколько человек не спят, смотрят в огонь костра. Вокруг где-то ходят хищные звери, в любой момент могут налететь враги. Эти прирожденные «совы» нужны племени для того, чтобы предупреждать о ночных опасностях. Они не только смотрят в огонь, еще они рассматривают звездное небо и думают о разных делах, изобретают.

Именно так возникли зародыши современной астрономии и инженерии, были открыты планеты, было изобретено колесо, а несколько раньше – лодка-долбленка – пирога, которая очень помогла человечеству преодолеть водные преграды и расселиться по всему земному шару. К другой деятельности эти мечтатели были непригодны, но племя кормило и защищало их за сторожевую функцию и уважало за ум и изобретательность. Все племя не имело никакой возможности заниматься такой протонаукой: нужно было рожать и воспитывать детей, собирать в лесу пропитание, охотиться, нападать на соседей. Небольшое же количество чудаков жить племени не мешало.

В защиту фантазий Фейнмана я могу привести тот факт, что многие мои коллеги, а в последнее время компьютерщики, могут работать только ночью, днем они сладко спят. Никакой КЗоТ не заставит их перейти к дневному образу жизни.

Мы сами совсем недавно пережили лихие девяностые годы, когда казалось, что в науку перестанут приходить молодые ученые, и она, бедная, вот-вот погибнет. Этого не случилось. Видимо, наука для прослойки настоящих исследователей является настолько же естественной и унаследованной потребностью, как потребность в пище и размножении.

Мотивация у этих людей заложена в их генах – они просто не могут жить иначе, несмотря ни на какие трудности, опасности и унижения. Вспомним Джордано Бруно, Галилея, Кибальчича, который накануне смертной казни изобретал межпланетные ракеты, Туполева, который в тюрьме изобретал бомбардировщик и воздушный лайнер Ту-104, Королева, который работал в обычной шарашке и изобретал ракету «Протон» и наш знаменитый sputnik. Несть им числа. Заставить этих людей сделать что-то по заказу, вопреки их интересам, невозможно, да и не нужно, общество может лишь использовать их светлую энергию, подобно даровой энергии ветра и солнца.

Обществу важно помнить о том, что этим истинным исследователям, хотя они, как и все мы, любят свою родину, в общем-то, все равно, где заниматься наукой. Если прижать их к ногтю, они уедут в другую страну и будут там заниматься своей работой. Потеря тончайшего слоя истинных исследователей для страны смертельно опасна.

Последний масштабный эксперимент по выдворению неарийских яйцеголовых провел, как известно, «товарищ» Гитлер. До этого эксперимента Германия наряду с Англией была ведущей научной державой. Сейчас Германия эту позицию утеряла и до сих пор не оправилась от шока. Теперь весь мир должен догонять США. Такие дела.

Ученая прослойка, по мнению Фейнмана, выжила в эволюции еще по одной причине. Он обращает внимание на то, что большая часть действий, которые мы совершаем в нашей жизни, являются ритуалами. В проверенных жизнью ритуалах мы не задумываемся каждый раз о том, как будем печь хлеб, готовить пищу, делать вино, шить одежду и обувь, водить автомобиль… Если бы каждый раз нам нужно было не бездумно проводить ритуалы, а все время включать головной мозг, человечество давно бы вымерло.

Подавляющая часть ритуалов для человечества полезна. В эволюции постоянно появляются и закрепляются новые ритуалы. Беда, однако, в том, что некоторые ритуалы на поверку оказываются либо бесполезными, либо даже вредными и затрудняют прогресс. Важнейшая функция прирожденных исследователей – смотрящих в огонь – во всем сомневаться, подвергать сомнению все, даже самые священные ритуалы, и препятствовать распространению и сохранению бесполезных и вредных. Это довольно тонкая материя. Общество может позволить себе содержание лишь очень небольшого слоя сомневающихся. Если бы все во всем сомневались, то человечество опять-таки остановилось бы и деградировало.

Ричард Фейнман. 2007 г. Худ. Натали Меерсон. Масло, фанера, 34×40 см. Публикуется с разрешения автора

…Фейнман считал важнейшим требованием к истинной фундаментальной науке необходимость ˮintegrityˮ. Это очень трудно переводимый термин. Переводы из словаря: integrity – целостность, сохранность, достоверность и правильность данных, соблюдение этических принципов, честность, высокие моральные качества. Поиск integrity иногда может занять многие годы. Гениальное озарение Дарвина о естественном отборе как причине образования биологических видов пришло к нему еще в молодости, во время кругосветного путешествия на корабле Ее Величества «Бигль» (1831–1836 гг.). А свою первую, оказавшуюся фундаментальной, работу «Происхождение видов путем естественного отбора, или Сохранение благоприятных рас в борьбе за жизнь» он опубликовал лишь спустя 23 года, в 1859 г.

Поучительны итоги проведенной Фейнманом блестящей экспертизы причин катастрофы американского космического челнока Challanger, в результате которой погибло семь человек, среди них простая школьная учительница. Катастрофа произошла в 1986 г, и проводил экспертизу Фейнман, будучи уже тяжело больным раком, от которого умер через два года. Безопасность полета космического челнока гарантировала огромная когорта ученых и инженеров Американского космического агентства NASA. По подсчетам этой команды выходило, что вероятность тяжелой катастрофы челнока была равна 1 к 100 000, то есть эти люди утверждали, что одна катастрофа произойдет лишь в одном из 100 тыс. полетов. Такая надежность означала бы, что при ежедневном запуске одного шаттла аварии случались бы в среднем лишь один раз за 274 года, вопреки простому здравому смыслу и жизненным наблюдениям.

Фейнман обратил внимание на то, что запуск челнока на мысе Канаверал происходил при холодной погоде (около -3 °С), нехарактерной для штата Флорида – обычно там тепло и зимой, и летом. Топливо в разгонных ступенях челнока – порох – было размещено в огромных тонкостенных барабанах без днищ. Несколько барабанов соединялись друг с другом встык. Стыки были герметизированы специальной эластичной резиной. Фейнман отодрал небольшой кусочек этой резины и обратил внимание на то, что на холоде она полностью теряет эластичность и даже трескается при сгибании.

Во время запуска челнока, естественно, снимался фильм, и на кадрах, снятых перед самым взрывом, было отчетливо видно, что пороховые газы прожгли корпус разгонной ступени в одном из мест стыка, и пламя вырывалось из середины блока наружу. Фейнман отметил, что запуски шаттлов никогда ранее не проводились при столь низких температурах. Причина катастрофы стала ему ясна: резина потеряла эластичность и не смогла компенсировать небольшое расхождение со стыковкой пороховых барабанов в результате вибрации. Образовалась щель, и через нее проникла струя горячих пороховых газов.

…Пример блестящей экспертизы – это расследование причин вспышки смертельной сибирской язвы, произошедшей в 1979 г. вблизи Свердловска, в окрестностях военного завода объединения «Биопрепарат», занимавшегося разработкой и производством бактериологического оружия и, скажем для справедливости, средств борьбы с биологическим оружием.

В 1976 г. СССР и США заключили договор о запрещении производства биологического оружия ввиду того, что его после первых случаев военного применения японцами в Китае, наконец, сочли варварским и к тому же малоэффективным и чрезвычайно опасным как для обороняющегося, так и для нападающего. Несмотря на соглашение, исследования и мелкомасштабные производства компонентов бактериологического оружия продолжались как в США, так и в СССР. Причиной аварии была ошибка персонала – работник не поставил вовремя воздушный фильтр, и споры сибирской язвы разнесло ветром по большой территории. По официальным данным, погибли 64 человека.

Наши санитарные службы и военные микробиологи причину вспышки объяснили очень быстро. Решающим признаком было то, что болезнь протекала в самой тяжелой, легочной форме, что могло случиться лишь при поступлении спор через дыхательные пути. Но сообщать открыто об этом прискорбном случае в ту пору было никак нельзя, власти списали все на передачу микробов человеку через мясо случайно заболевшего крупного рогатого скота. В начале 1990-х гг. во время ельцинского правления в российско-американских отношениях наступило потепление, состоялись взаимные визиты американских и российских военных микробиологов в те места, где создавалось и испытывалось бактериологическое оружие и соответствующие вакцины-противоядия.

Российско-американская делегация посетила Свердловское предприятие «Биопрепарат» для выяснения истинной причины вспышки сибирской язвы. Эту делегацию возглавлял американский профессор Мезельсон, человек, который вместе со своим товарищем Сталем когда-то сделал самый блестящий в мире, по моему мнению, биохимический эксперимент…

Мезельсон провел экспертизу в России очень тщательно и очень быстро. Ему показали все документы, незадолго до того бывшие совершенно секретными, и лабораторию, в которой произошла авария. Он, однако, не удовлетворился увиденным и подробно поговорил с местным населением, посетил местное кладбище, записал даты смерти, указанные на табличках, потребовал и получил розы ветров для тех дней, в которые произошла катастрофа. Он очень быстро пришел к тем же выводам, что и секретная советская комиссия, и счел доказанным, что вспышка легочной сибирской язвы произошла именно из-за аварии на военном предприятии. До момента этой экспертизы Мезельсон никогда не занимался военной микробиологией.

…Умудренные опытом, честные, приученные к соблюдению принципа integrity фундаментальные ученые могут и должны участвовать в крупных экспертизах проектов и причин катастроф, и эти экспертизы иногда дают огромный экономический и политический эффект. Вопрос только в одном – как найти и как привлечь таких ученых к экспертизам. Особая оплата не является для них решающим стимулом.

Открою управленцам-экономистам еще одну ахиллесову пяту фундаментальных ученых. Поскольку от первого момента открытия до окончательного доказательства integrity проходит много времени, ученые иногда подолгу работают лишь с недостаточной для них интеллектуальной нагрузкой. В течение значительных промежутков времени они стараются, но не могут открыть ничего нового, и у них возникает особый комплекс – насущная потребность сделать что-нибудь полезное для общества. Фейнман был активнейшим участником Манхэттенского проекта и завоевал у коллег огромнейший авторитет. Однако у него возникло отвращение к разработке оружия массового уничтожения. Он был очень впечатлительным человеком. И ему снилось, как разрушается Нью-Йорк при атомной атаке, как рушатся стены, падают небоскребы и погибают люди. Он демобилизовался из Манхэттенского проекта уже 1945 г. в возрасте 27 лет.

Он решил пойти в один из университетов и рассуждал так: «Я буду преподавать физику студентам и получать деньги за это. В свободное же время, если придет вдохновение, я попытаюсь сделать научное открытие, но это будет сделано добровольно, а не в обязательном порядке. Мне не будет неудобно, если открытие не состоится». Он поступил сначала в Корнельский университет, а позднее – в Калифорнийский технологический институт, где весело преподавал физику, создал «фейнмановские» лекции по физике – самое знаменитое учебное пособие для всех стран, включая и СССР, а в свободное время ходил в бар, где занимался метанием вращающихся тарелочек – в то время в моде была такая игра. Странным образом, из этой игры в его голове и возникла концепция квантовой электродинамики, за которую он получил Нобелевскую премию в 1965 г.

Итак, крупные фундаментальные ученые страдают комплексом вины в то время, когда они не могут делать фундаментальные открытия, и с удовольствием начинают делать практические дела – преподавать или изобретать, или решать прикладные задачи. Это и есть те моменты, в которые фундаментального ученого можно взять за жабры и привлечь к решению практически важных, в том числе сулящих экономическую выгоду, проектов.

Директор иркутского Лимнологического института СО РАН, академик М.А. Грачев (справа) с женой, д.б.н. Е. В. Лихошвай и к. ф.-м. Е. Л. Гольдбергом, сотрудником ЛИН. 2006 г. Фото Л. Панфиловой

Наша общая задача – сохранить тончайший слой смотрящих в огонь и способных делать фундаментальные открытия молодых и не очень молодых ученых. Им надо дать возможность спокойно работать. Во имя этой важнейшей задачи наука и власть обязаны найти общий язык, и сделать это нужно как можно скорее.

Спасибо моей любимой жене Елене Валентиновне Лихошвай за то, что она придумала название – «Смотрящие в огонь» и за все-все-все. М. Г.

Полный текст статьи «Смотрящие в огонь» М. А. Грачева читайте в журнале НАУКА из первых рук, №2 (56), 2014

Понравилось? Поделись с друзьями!

Подпишись на еженедельную e-mail рассылку!