
Ускорители частиц – микроскопы современной физики
Самым удивительным открытием прошлого века стало открытие того, что ядра атома состоят из нуклонов — нейтронов и протонов, — а те, в свою очередь, — из кварков. Вместе с электронами кварки лежат в основе мироздания, являясь теми элементарными «кирпичиками», которые, по нынешним представлениям, составляют вещество.
Исследовать элементарные частицы сложно: их нельзя увидеть в микроскоп, нельзя долго хранить… Выход из этой ситуации — в высокоэнергетических взаимодействиях стабильных частиц, в результате которых могут рождаться новые элементарные структуры, а их свойства уже можно исследовать. Высокий уровень кинетической энергии частиц достигается в огромных установках — ускорителях, где они разгоняются до скорости, близкой к скорости света
Счастливая «встреча»
Классические ускорители высоких энергий, в которых пучок быстрых частиц бомбардировал неподвижную мишень, оказались велики, сложны и дороги. И потому сооружение подобных установок зачастую требовало усилий нации в целом. Проблема была решена с помощью метода так называемых встречных пучков. И хотя огромные энергетические преимущества встречных пучков в создании новых тяжелых частиц были очевидны, в середине прошлого века идея использовать вместо плотной мишени крайне разреженный пучок частиц большинством физиков воспринималась как дело неопределенно далекого будущего.
Работать над методом встречных пучков начали многие, однако к успешному финишу — проведению экспериментов по электрон-электронному рассеиванию в 1965 г. — пришли только два центра: американский Стэнфордский университет и Институт ядерной физики в Новосибирске, образованный в 1958 г. на базе лаборатории Института атомной энергии под руководством Г. И. Будкера. Этим событием было ознаменовано появление нового направления в экспериментальной физике элементарных частиц.
Г.И. БУДКЕР — академик АН СССР, выдающийся физик, основатель и первый директор Института ядерной физики СО АН СССР. Основные научные интересы — физика высоких энергий и физика управляемого термоядерного синтеза

Мы решили идти по другому пути — сделать мишень подвижной и сталкивать два пучка частиц, разогнанных до одинаковой энергии. В этом случае массы «снаряда» и «мишени» остаются равными, и они могут всю свою энергию превратить в энергию взаимодействия.
Очень важно, что при скоростях частиц, близких к скорости света, эффект взаимодействия встречных частиц увеличивается не вчетверо, как следовало бы по механике Ньютона, а в значительно большее число раз. Например, при столкновении двух электронов, мчащихся навстречу друг другу с энергией в миллиард электронвольт, эффект взаимодействия оказывается таким же, как у обычного ускорителя на энергию в 4 000 миллиардов электронвольт. Сама по себе идея ускорителей на встречных пучках не нова, и в ней нет никаких научных откровений. Это простое следствие теории относительности Эйнштейна. Многие высказывали эту идею и до нас, но, как правило, пессимистически относились к возможности ее реализации. И это понятно. Ведь плотность «подвижной мишени» — пучка частиц в обычных ускорителях — в сотни миллионов миллиардов (единица с семнадцатью нулями) раз меньше плотности неподвижной мишени. Столкнуть две частицы — задача по сложности примерно такая же, как «устроить» встречу двух стрел, одну из которых выпустил бы Робин Гуд с Земли, а вторую — Вильгельм Телль с планеты, вращающейся вокруг Сириуса. Но выгоды встречных пучков по сравнению с обычными методами столь велики, что мы решили все-таки преодолеть трудности. Для этого потребовалось увеличить плотность пучков и заставить их много раз проходить друг через друга *.
*Газета «За науку в Сибири», 14 янв. 1970
Одним из самых больших затруднений, вставших на пути развития ускорительной техники на встречных пучках, была проблема получения плотных пучков тяжелых частиц с малым угловым и энергетическим разбросом. Идея, выдвинутая на обсуждение Будкером в 1966 г., оказалась гениально простой: параллельно пучку тяжелых частиц пускать пучок электронов с той же средней скоростью и достаточно низкой температурой. При этом частота парных столкновений частиц резко возрастает, и тяжелые частицы «охлаждаются», передавая часть энергии электронам. Метод электронного охлаждения, впервые опробованный в ИЯФе в 1974 г. в ходе экспериментов с пучком протонов, сегодня широко используется во многих мировых ускорительных центрах.
Метод встречных пучков стал наиболее эффективным методом исследования струтуры микромира, а ускорители на его основе — одними из основных источников информации об элементарных частицах.
Ускорители большие и малые
Первая установка на встречных пучках ВЭПП-1 стала родоначальником целой линейки ускорителей ИЯФа. Эти ускорители не самые большие в мире, но тот факт, что в институте умеют производить подобную технику, позволил ему участвовать в создании для зарубежных научных объединений действительно больших машин — первоклассных инструментов, необходимых для познания устройства мироздания. Например, для большого адронного коллайдера LHC, который строится на границе Швейцарии и Франции в ЦЕРНе (Европейском центре ядерных исследований), было изготовлено несколько сот магнитов и сверхпроводящих шин. За производство этой продукции в качестве признания ИЯФ получил от своих швейцарских коллег знак качества «Золотой адрон».
А.Н. СКРИНСКИЙ — академик РАН, ученик и преемник Г. И. Будкера на посту директора Института ядерной физики СО РАН, специалист в области физики ускорителей и физики высоких энергий.

Встречные пучки, впервые реализованные в ИЯФе, сегодня являются главным источником экспериментальной информации в физике фундаментальных свойств материи.
Электронное охлаждение, предложенное и развиваемое в ИЯФе, стало важным средством повышения качества и прецизионности экспериментов по физике ядра, физике элементарных частиц и даже по атомной физике. Такие установки используются во многих лабораториях мира, в том числе с участием ИЯФа.
Предложенный и разработанный в ИЯФе метод повышения точности измерения масс элементарных частиц на основе резонансной деполяризации позволил установить прецизионную шкалу масс во всем диапазоне энергий вплоть до 100 ГэВ.
Разработанный в ИЯФе метод генерации когерентного электромагнитного излучения на основе ускорителей-рекуператоров развивается во многих лабораториях мира и позволяет получать рекордные средние мощности подобного излучения, которые сегодня приносят важные результаты в разнообразных областях науки.
Предложенные в ИЯФе подходы к получению рентгеновских изображений позволяют радикально снизить лучевую нагрузку при медицинских обследованиях и практически без угрозы для здоровья предотвратить возможность проноса взрывчатки, пластикового оружия, наркотиков в самолеты и в другие опасные места
Говоря о достижених ИЯФа в области создания ускорительной техники, нельзя не упомянуть промышленные ускорители, пусть эти скромные установки и не поражают воображение ни своими размерами, ни энергией частиц. Начиная с 1963 г. здесь была разработана и изготовлена серия специальных электронных ускорителей для радиационной обработки материалов, что открыло принципиально новые технологические возможности в разных областях народного хозяйства, включая сельское хозяйство и медицину.
Хорошим примером могут служить установки для ионной и протонной терапии рака, о чем писал еще Г. И. Будкер. Клинические исследования в этой области были начаты около 50 лет назад практически во всех развитых странах мира, в том числе и в России. К настоящему времени около 50 тыс. пациентов в мире пролечено с помощью ионной или протонной терапии. Основным ограничением для широкого применения подобных методик является отсутствие недорогих специализированных ускорительных комплексов. Согласно оценке экспертов, в наши дни идет процесс перехода от научно-исследовательских разработок к серийным установкам для массовой терапии онкологических заболеваний.
Г. И. БУДКЕР: «В процессе работы над нашими основными установками были созданы промежуточные — ускорители на средние и низкие энергии. <…>Луч ускорителя оказался хорошим тружеником. Под воздействием облучения полиэтилен, например, становится прекрасной пластмассой и, сохраняя свою дешевизну, технологичность, великолепные изоляционные качества, приобретает также стойкость к высоким температурам.
В институте хранится стальной лист толщиной в три сантиметра, на котором электронным лучом, выпущенным в воздух, выжжен полуметровой длины восклицательный знак. Он словно «восклицает», обращаясь к металлургам: «Вам предлагается новое мощное средство для сварки, резки и плавки!»
Большое значение мы придаем и работам по дезинсекции в элеваторах и зернохранилищах. Во всем мире огромное количество зерна погибает от амбарных вредителей. Между тем можно подобрать абсолютно безопасные для хлеба дозы облучения зерна, при которых амбарные вредители перестанут размножаться. <…>
Важное применение могут получить ускорители протонов на энергию 200 млн вольт. Теоретически и экспериментально доказано, что лечение рака протонами гораздо эффективнее применяемой в настоящее время рентгено- и гамма-терапии. Однако обычные ускорители протонов на такие энергии очень сложны, дороги и недоступны для широкого использования в клиниках даже самых развитых стран. Поэтому создание дешевого и простого в обращении ускорителя протонов — важное и благородное дело.
Удивителен луч ускоренных частиц. Он ищет полезные ископаемые и стерилизует медикаменты, консервирует продукты и обеззараживает сточные воды. С его помощью можно передавать энергию на расстояния и просматривать толщину бетона и металла, создавать новые молекулы и даже атомные ядра, которых нет в таблице Менделеева. Наконец, с его и только с его помощью можно создать антивещество и новые элементарные частицы. Это кажется невероятным, но это так. Если же вдуматься, то здесь нет ничего странного. Небывалая концентрация энергии дает новое качество»*.
*Газета «Правда», 27 февр. 1969
Такая установка разработана и сейчас производится в ИЯФе. Отличительной особенностью проекта протонно-углеродного комплекса является применение эффективного электронного охлаждения ионного пучка — метода, предложенного и впервые использованного именно в этом институте. Поскольку «холодные» ионные пучки имеют предельно малые поперечные размеры и разброс энергии, то применение этого метода позволяет увеличить интенсивность пучка, сократить стоимость и энергопотребление ускорительного комплекса, что должно отразиться на стоимости курса терапии.
