• Читателям
  • Авторам
  • Партнерам
  • Студентам
  • Библиотекам
  • Рекламодателям
  • Контакты
  • Язык: English version
4245
Раздел: Физика

О настоящем и будущем термоядерной энергетики

Стакан дейтерия, тяжелого изотопа водорода, присутствующего в обычной воде, по энергетическому «потенциалу» эквивалентен эшелону вагонов нефти. Этот поразительный факт при наличии необходимых технологий сулит человечеству в далеком будущем неисчерпаемый источник энергии. Проект Международного экспериментального термоядерного реактора (ITER), основанный на реакции слияния ядер двух тяжелых изотопов водорода, дейтерия и трития, в ядро гелия, призван показать миру возможность промышленного производства термоядерной энергии. И если эксперимент пройдет успешно, то это будущее может оказаться не таким уж и далеким

Первое упоминание о «звездном» термояде относится еще к 1928 г., но систематические работы по управляемому термоядерному синтезу начались лишь в 1950-х гг. сразу в трех странах: Англии, США и Советском Союзе. И, как нетрудно догадаться, поначалу далеко не в мирных целях: первый успех на этом пути прозвучал в СССР летом 1953 г. очень громко – ​взрывом первой в мире водородной бомбы. Тогда же появилась идея использовать термоядерную энергию в энергетике, но первоначальная эйфория перетекла в долгие годы исканий и напряженной работы.

Следующий шаг к управляемому термоядерному синтезу был сделан советскими физиками А. Д. Сахаровым и И. Е. Таммом, предложившими удерживать плазму с помощью магнитного поля. Нужно было только придумать технологию, с помощью которой вещество можно не только довести до необходимой температуры, но и удержать его. Другими словами, создать ловушку для плазмы.

Токамак ИТЭР будет состоять более чем из миллиона деталей и весить 23 тыс. тонн при высоте 30 м. Credit © ITER Organization

Плазма – ​это полностью или частично ионизованный газ, в котором суммарные отрицательные и положительные заряды равны. В целом она представляет собой электрически нейтральную среду. Эта четвертая форма состояния вещества (после твердого, жидкого и газообразного) существует при температурах 104 °C и выше.
Плотная высокотемпературная плазма находится только в звездах, на Земле ее можно получить лишь в лабораторных условиях. Эта необычная для нас «лучистая материя» поражает воображение большим числом степеней свободы и одновременно способностью к самоорганизации и отклику на внешнее воздействие, такое как электрические и магнитные поля.
Плазму можно удерживать в магнитном поле, заставляя принимать различные формы, но она стремится занять наиболее энергетически выгодное для нее положение: подобно живому организму, она будет вырываться на свободу из жесткой «клетки» магнитной ловушки, если конфигурация последней ее не устраивает (Шошин, Аникеев, 2007)

Наши ученые выдвинули идею замкнутого магнитного термоядерного реактора. Проблема в том, что магнитное поле сжимает ...

comments powered by HyperComments