• Авторам
  • Партнерам
  • Студентам
  • Библиотекам
  • Рекламодателям
  • Контакты
  • Язык: English version
9334
Нобелевская премия по физиологии и медицине 2017.  Открытие молекулярно-генетических механизмов биоритмов
Физиология

Нобелевская премия по физиологии и медицине 2017. Открытие молекулярно-генетических механизмов биоритмов

Нобелевскую премию по физиологии и медицине в этом году получили американские исследователи Майкл Янг, Джеффри Холл и Майкл Росбаш – за многолетние исследования генетических основ циркадных ритмов («биологических часов»). Янг работает в Нью-Йоркском Университете Рокфеллера, а Холл и Росбаш – в Брандейском университете в Массачусетсе. Это событие прокомментировал главный научный сотрудник новосибирского Института цитологии и генетики СО РАН, д.б.н. Михаил Павлович Мошкин


Д.б.н. Михаил Павлович Мошкин, д.ф.-.м.н. Александр Дмитриевич Долгов и д.б.н. Елена Ивановна Рябчикова на пресс-конференции, посвященной Нобелевской неделе

Нобелевская премия в области физиологии и медицины в 2017 г. присуждена за открытие генов, определяющих работу биологических часов – внутриклеточного механизма, который управляет циклическими колебаниями биологических процессов, связанных со сменой дня и ночи. Суточные или околосуточные (циркадные) ритмы присущи всем живым организмам, от цианобактерий до высших животных.

Безусловно, любой научный результат, получивший такое мировое признание, опирается на достижения предшественников. Впервые представление о биологических часах возникло еще в XVII в., когда французский астроном Жан Жак де Меран обнаружил, что суточный ритм движения листьев растений не исчезает даже в темноте: он жестко «запрограммирован», а не обусловлен действием окружающей среды.

Акация шелковая (Albizia julibrissin). Слева – днем, справа – ночью. Повинуясь своим биологическим часам, ночью это растение сворачивает листья

С этого момента и началось изучение феномена биологических часов. Оказалось, что почти во всех живых организмах протекают циклические процессы с суточным или околосуточным периодом. И даже при отсутствии главного внешнего фактора синхронизации – смены дня и ночи, организмы продолжают жить по суточному ритму, хотя период этого ритма может быть больше/меньше продолжительности суток в зависимости от индивидуальных особенностей.

Генетическая основа биологических часов была впервые установлена в 1970-х гг., когда у плодовой мушки Drozophila melanogaster был открыт ген Per (от period). Авторы этого открытия, Сеймур Бензер и его ученик Рональд Конопка из Калифорнийского технологического института, провели масштабный эксперимент, работая с сотнями лабораторных линий мух, полученных с помощью химического мутагенеза. Ученые заметили, что при одинаковом периоде освещения у некоторых мух период суточного ритма сна и бодрствования становился либо существенно меньше обычных суток (19 ч), либо больше (28 ч); кроме того, была обнаружена группа «аритмиков» с полностью асинхронным циклом. Пытаясь идентифицировать гены, контролирующие циркадный ритм у дрозофил, ученые продемонстрировали, что нарушения этого ритма связаны с мутациями неизвестного гена или группы генов.

Таким образом будущие лауреаты Нобелевской премии Холл, Росбаш и Янг уже имели в своем распоряжении линии мух с генетически обусловленными изменениями периода сна и бодрствования. В 1984 г. эти ученые выделили и секвенировали искомый ген Per и выяснили, что уровень кодируемого им белка меняется с суточной периодичностью, достигая пика в ночное время и снижаясь днем.

Плодовая мушка Drosophila melanogaster была первым организмом, у которого обнаружили гены, регулирующие циркадные ритмы. Фото предоставлено Университетом штата Орегон

Это открытие дало новый толчок к исследованиям, цель которых – понять, почему механизмы циркадных ритмов работают именно так, а не иначе, почему у разных индивидуумов суточный период может различаться, но при этом оказывается устойчив к действию внешних факторов, таких как температура (Pittendrich, 1960). Так, работы, выполненные на цианобактериях (сине-зеленых водорослях), показали, что с повышением температуры на 10 ºС суточный период их циклических метаболических процессов меняется всего на 10–15%, тогда как по законам химической кинетики это изменение должно быть больше почти на порядок! Этот факт стал настоящим вызовом, так как все биохимические реакции должны подчиняться правилам химической кинетики.

Сейчас ученые сошлись во мнении, что ритм циклических процессов остается достаточно стабильным потому, что суточный цикл определяется не одним геном. В 1994 г. Янг открыл у дрозофилы ген Tim, кодирующий белок, участвующий в регуляции уровня белка PER по принципу обратной связи. При повышении температуры возрастает наработка не только белков, участвующих в формировании циркадного цикла, но и других белков, которые его тормозят, в результате работа биологических часов не сбивается.

У млекопитающих открыто целое семейство генов циркадных генов – Bmal1, Clock, Cry1-2, Per1-3, механизм работы которых подчиняется принципу обратной связи. Белки BMAL1 и CLOCK активируют гены Per и Cry, в результате чего синтезируются белки PER и CRY. Когда этих белков становится много, они начинают подавлять активность BMAL1 и CLOCK, тем самым снижая свой синтез. Когда количество белков PER и CRY снижается до определенного уровня, вновь активируются BMAL1 и CLOCK. Цикл продолжается

Базовые механизмы циркадных ритмов на сегодня достаточно изучены, хотя многие детали так и остались необъясненными. Так, непонятно, каким образом в одном организме могут одновременно сосуществовать несколько «часов»: как реализуются процессы, идущие с разным периодом? Например, в экспериментах, когда люди жили в помещениях или в пещере, не получая информации о смене дня и ночи, их температура тела, секреция стероидных гормонов и другие физиологические параметры циклировали с периодом около 25 ч. При этом периоды сна и бодрствования могли варьировать от 15 до 60 ч. (Wever, 1975). 

Изучение циркадных ритмов важно и для понимания функционирования организма в экстремальных условиях, например, в Арктике, где в условиях полярного дня и ночи не действуют естественные факторы синхронизации суточных ритмов. Существуют убедительные данные, что при долгом пребывании в таких условиях у человека существенно изменяются суточные ритмы целого ряда функций (Мошкин, 1984). Сейчас мы осознаем, что этот фактор может заметно влиять на здоровье человека, и знания о молекулярной основе циркадных ритмов должны помочь при определении вариантов генов, которые будут «полезны» при работе в полярных условиях. 

 часы  

Но знания о биоритмах важны не только для полярников. Циркадные ритмы влияют на наши обменные процессы, работу иммунной системы и процесс воспаления, на кровяное давление, температуру тела, функции мозга и многое другое. От времени суток зависит эффективность некоторых лекарств и их побочные эффекты. При вынужденном несоответствии внутренних и внешних «часов» (например, из-за широтного перелета или работы в ночную смену) могут наблюдаться разнообразные дисфункции организма, от расстройства желудочно-кишечного тракта и сердечно-сосудистой системы до депрессии, при этом также повышается риск развития онкологических заболеваний.

Литература

PITTENDRIGH C.S. Circadian rhythms and the circadian organization of living systems.Cold Spring Harb Symp Quant Biol. 1960;25:159-84. 

Wever, R. (1975). "The circadian multi-oscillator system of man". Int J Chronobiol. 3 (1): 19–55. 

Мошкин М.П. Влияние естественного светового режима на биоритмы полярников // Физиология человека. 1984, 10(1): 126-129. 

Подготовила Татьяна Морозова


Понравилось? Поделись с друзьями!

Подпишись на еженедельную e-mail рассылку!